Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
pwpr
Next ⟩
pwtp
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwpr
Description:
The power set of an unordered pair.
(Contributed by
NM
, 1-May-2009)
Ref
Expression
Assertion
pwpr
⊢
𝒫
A
B
=
∅
A
∪
B
A
B
Proof
Step
Hyp
Ref
Expression
1
sspr
⊢
x
⊆
A
B
↔
x
=
∅
∨
x
=
A
∨
x
=
B
∨
x
=
A
B
2
vex
⊢
x
∈
V
3
2
elpr
⊢
x
∈
∅
A
↔
x
=
∅
∨
x
=
A
4
2
elpr
⊢
x
∈
B
A
B
↔
x
=
B
∨
x
=
A
B
5
3
4
orbi12i
⊢
x
∈
∅
A
∨
x
∈
B
A
B
↔
x
=
∅
∨
x
=
A
∨
x
=
B
∨
x
=
A
B
6
1
5
bitr4i
⊢
x
⊆
A
B
↔
x
∈
∅
A
∨
x
∈
B
A
B
7
velpw
⊢
x
∈
𝒫
A
B
↔
x
⊆
A
B
8
elun
⊢
x
∈
∅
A
∪
B
A
B
↔
x
∈
∅
A
∨
x
∈
B
A
B
9
6
7
8
3bitr4i
⊢
x
∈
𝒫
A
B
↔
x
∈
∅
A
∪
B
A
B
10
9
eqriv
⊢
𝒫
A
B
=
∅
A
∪
B
A
B