Metamath Proof Explorer


Theorem sspr

Description: The subsets of a pair. (Contributed by NM, 16-Mar-2006) (Proof shortened by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion sspr ABCA=A=BA=CA=BC

Proof

Step Hyp Ref Expression
1 uncom BC=BC
2 un0 BC=BC
3 1 2 eqtri BC=BC
4 3 sseq2i ABCABC
5 0ss A
6 5 biantrur ABCAABC
7 4 6 bitr3i ABCAABC
8 ssunpr AABCA=A=BA=CA=BC
9 uncom B=B
10 un0 B=B
11 9 10 eqtri B=B
12 11 eqeq2i A=BA=B
13 12 orbi2i A=A=BA=A=B
14 uncom C=C
15 un0 C=C
16 14 15 eqtri C=C
17 16 eqeq2i A=CA=C
18 3 eqeq2i A=BCA=BC
19 17 18 orbi12i A=CA=BCA=CA=BC
20 13 19 orbi12i A=A=BA=CA=BCA=A=BA=CA=BC
21 7 8 20 3bitri ABCA=A=BA=CA=BC