Step |
Hyp |
Ref |
Expression |
1 |
|
sigagenval |
⊢ ( 𝐴 ∈ 𝑉 → ( sigaGen ‘ 𝐴 ) = ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ) |
2 |
|
fvex |
⊢ ( sigaGen ‘ 𝐴 ) ∈ V |
3 |
1 2
|
eqeltrrdi |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ∈ V ) |
4 |
|
intex |
⊢ ( { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ≠ ∅ ↔ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ∈ V ) |
5 |
3 4
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ≠ ∅ ) |
6 |
|
ssrab2 |
⊢ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ⊆ ( sigAlgebra ‘ ∪ 𝐴 ) |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ⊆ ( sigAlgebra ‘ ∪ 𝐴 ) ) |
8 |
|
fvex |
⊢ ( sigAlgebra ‘ ∪ 𝐴 ) ∈ V |
9 |
8
|
elpw2 |
⊢ ( { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ∈ 𝒫 ( sigAlgebra ‘ ∪ 𝐴 ) ↔ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ⊆ ( sigAlgebra ‘ ∪ 𝐴 ) ) |
10 |
7 9
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ∈ 𝒫 ( sigAlgebra ‘ ∪ 𝐴 ) ) |
11 |
|
insiga |
⊢ ( ( { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ≠ ∅ ∧ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ∈ 𝒫 ( sigAlgebra ‘ ∪ 𝐴 ) ) → ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ) |
12 |
5 10 11
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ) |
13 |
1 12
|
eqeltrd |
⊢ ( 𝐴 ∈ 𝑉 → ( sigaGen ‘ 𝐴 ) ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ) |