Metamath Proof Explorer


Theorem sigagensiga

Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion sigagensiga ( 𝐴𝑉 → ( sigaGen ‘ 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sigagenval ( 𝐴𝑉 → ( sigaGen ‘ 𝐴 ) = { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )
2 fvex ( sigaGen ‘ 𝐴 ) ∈ V
3 1 2 eqeltrrdi ( 𝐴𝑉 { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ V )
4 intex ( { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ≠ ∅ ↔ { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ V )
5 3 4 sylibr ( 𝐴𝑉 → { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ≠ ∅ )
6 ssrab2 { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ⊆ ( sigAlgebra ‘ 𝐴 )
7 6 a1i ( 𝐴𝑉 → { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ⊆ ( sigAlgebra ‘ 𝐴 ) )
8 fvex ( sigAlgebra ‘ 𝐴 ) ∈ V
9 8 elpw2 ( { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ 𝒫 ( sigAlgebra ‘ 𝐴 ) ↔ { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ⊆ ( sigAlgebra ‘ 𝐴 ) )
10 7 9 sylibr ( 𝐴𝑉 → { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ 𝒫 ( sigAlgebra ‘ 𝐴 ) )
11 insiga ( ( { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ≠ ∅ ∧ { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ 𝒫 ( sigAlgebra ‘ 𝐴 ) ) → { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ ( sigAlgebra ‘ 𝐴 ) )
12 5 10 11 syl2anc ( 𝐴𝑉 { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ ( sigAlgebra ‘ 𝐴 ) )
13 1 12 eqeltrd ( 𝐴𝑉 → ( sigaGen ‘ 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) )