Metamath Proof Explorer


Theorem sgsiga

Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypothesis sgsiga.1 ( 𝜑𝐴𝑉 )
Assertion sgsiga ( 𝜑 → ( sigaGen ‘ 𝐴 ) ∈ ran sigAlgebra )

Proof

Step Hyp Ref Expression
1 sgsiga.1 ( 𝜑𝐴𝑉 )
2 sigagensiga ( 𝐴𝑉 → ( sigaGen ‘ 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) )
3 elrnsiga ( ( sigaGen ‘ 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) → ( sigaGen ‘ 𝐴 ) ∈ ran sigAlgebra )
4 1 2 3 3syl ( 𝜑 → ( sigaGen ‘ 𝐴 ) ∈ ran sigAlgebra )