Description: The sigma-algebra generated by a collection A is a sigma-algebra on U. A . (Contributed by Thierry Arnoux, 27-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | unisg | ⊢ ( 𝐴 ∈ 𝑉 → ∪ ( sigaGen ‘ 𝐴 ) = ∪ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagensiga | ⊢ ( 𝐴 ∈ 𝑉 → ( sigaGen ‘ 𝐴 ) ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ) | |
2 | issgon | ⊢ ( ( sigaGen ‘ 𝐴 ) ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ↔ ( ( sigaGen ‘ 𝐴 ) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ ( sigaGen ‘ 𝐴 ) ) ) | |
3 | 1 2 | sylib | ⊢ ( 𝐴 ∈ 𝑉 → ( ( sigaGen ‘ 𝐴 ) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ ( sigaGen ‘ 𝐴 ) ) ) |
4 | 3 | simprd | ⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ ( sigaGen ‘ 𝐴 ) ) |
5 | 4 | eqcomd | ⊢ ( 𝐴 ∈ 𝑉 → ∪ ( sigaGen ‘ 𝐴 ) = ∪ 𝐴 ) |