Metamath Proof Explorer


Theorem dmsigagen

Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion dmsigagen dom sigaGen = V

Proof

Step Hyp Ref Expression
1 vuniex 𝑗 ∈ V
2 pwsiga ( 𝑗 ∈ V → 𝒫 𝑗 ∈ ( sigAlgebra ‘ 𝑗 ) )
3 1 2 ax-mp 𝒫 𝑗 ∈ ( sigAlgebra ‘ 𝑗 )
4 pwuni 𝑗 ⊆ 𝒫 𝑗
5 sseq2 ( 𝑠 = 𝒫 𝑗 → ( 𝑗𝑠𝑗 ⊆ 𝒫 𝑗 ) )
6 5 rspcev ( ( 𝒫 𝑗 ∈ ( sigAlgebra ‘ 𝑗 ) ∧ 𝑗 ⊆ 𝒫 𝑗 ) → ∃ 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) 𝑗𝑠 )
7 3 4 6 mp2an 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) 𝑗𝑠
8 rabn0 ( { 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) ∣ 𝑗𝑠 } ≠ ∅ ↔ ∃ 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) 𝑗𝑠 )
9 7 8 mpbir { 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) ∣ 𝑗𝑠 } ≠ ∅
10 intex ( { 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) ∣ 𝑗𝑠 } ≠ ∅ ↔ { 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) ∣ 𝑗𝑠 } ∈ V )
11 9 10 mpbi { 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) ∣ 𝑗𝑠 } ∈ V
12 df-sigagen sigaGen = ( 𝑗 ∈ V ↦ { 𝑠 ∈ ( sigAlgebra ‘ 𝑗 ) ∣ 𝑗𝑠 } )
13 11 12 dmmpti dom sigaGen = V