Step |
Hyp |
Ref |
Expression |
1 |
|
vuniex |
⊢ ∪ 𝑗 ∈ V |
2 |
|
pwsiga |
⊢ ( ∪ 𝑗 ∈ V → 𝒫 ∪ 𝑗 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ) |
3 |
1 2
|
ax-mp |
⊢ 𝒫 ∪ 𝑗 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) |
4 |
|
pwuni |
⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 |
5 |
|
sseq2 |
⊢ ( 𝑠 = 𝒫 ∪ 𝑗 → ( 𝑗 ⊆ 𝑠 ↔ 𝑗 ⊆ 𝒫 ∪ 𝑗 ) ) |
6 |
5
|
rspcev |
⊢ ( ( 𝒫 ∪ 𝑗 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ∧ 𝑗 ⊆ 𝒫 ∪ 𝑗 ) → ∃ 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) 𝑗 ⊆ 𝑠 ) |
7 |
3 4 6
|
mp2an |
⊢ ∃ 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) 𝑗 ⊆ 𝑠 |
8 |
|
rabn0 |
⊢ ( { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ∣ 𝑗 ⊆ 𝑠 } ≠ ∅ ↔ ∃ 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) 𝑗 ⊆ 𝑠 ) |
9 |
7 8
|
mpbir |
⊢ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ∣ 𝑗 ⊆ 𝑠 } ≠ ∅ |
10 |
|
intex |
⊢ ( { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ∣ 𝑗 ⊆ 𝑠 } ≠ ∅ ↔ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ∣ 𝑗 ⊆ 𝑠 } ∈ V ) |
11 |
9 10
|
mpbi |
⊢ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ∣ 𝑗 ⊆ 𝑠 } ∈ V |
12 |
|
df-sigagen |
⊢ sigaGen = ( 𝑗 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑗 ) ∣ 𝑗 ⊆ 𝑠 } ) |
13 |
11 12
|
dmmpti |
⊢ dom sigaGen = V |