Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sssigagen | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub | ⊢ 𝐴 ⊆ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } | |
| 2 | sigagenval | ⊢ ( 𝐴 ∈ 𝑉 → ( sigaGen ‘ 𝐴 ) = ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∣ 𝐴 ⊆ 𝑠 } ) | |
| 3 | 1 2 | sseqtrrid | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) ) |