Metamath Proof Explorer


Theorem sssigagen

Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017)

Ref Expression
Assertion sssigagen ( 𝐴𝑉𝐴 ⊆ ( sigaGen ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssintub 𝐴 { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 }
2 sigagenval ( 𝐴𝑉 → ( sigaGen ‘ 𝐴 ) = { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )
3 1 2 sseqtrrid ( 𝐴𝑉𝐴 ⊆ ( sigaGen ‘ 𝐴 ) )