Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sssigagen | |- ( A e. V -> A C_ ( sigaGen ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub | |- A C_ |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } |
|
2 | sigagenval | |- ( A e. V -> ( sigaGen ` A ) = |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } ) |
|
3 | 1 2 | sseqtrrid | |- ( A e. V -> A C_ ( sigaGen ` A ) ) |