Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sssigagen | |- ( A e. V -> A C_ ( sigaGen ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub | |- A C_ |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } |
|
| 2 | sigagenval | |- ( A e. V -> ( sigaGen ` A ) = |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } ) |
|
| 3 | 1 2 | sseqtrrid | |- ( A e. V -> A C_ ( sigaGen ` A ) ) |