Metamath Proof Explorer


Theorem sssigagen2

Description: A subset of the generating set is also a subset of the generated sigma-algebra. (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Assertion sssigagen2 ( ( 𝐴𝑉𝐵𝐴 ) → 𝐵 ⊆ ( sigaGen ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴𝑉𝐵𝐴 ) → 𝐵𝐴 )
2 sssigagen ( 𝐴𝑉𝐴 ⊆ ( sigaGen ‘ 𝐴 ) )
3 2 adantr ( ( 𝐴𝑉𝐵𝐴 ) → 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) )
4 1 3 sstrd ( ( 𝐴𝑉𝐵𝐴 ) → 𝐵 ⊆ ( sigaGen ‘ 𝐴 ) )