Description: A subset of the generating set is also a subset of the generated sigma-algebra. (Contributed by Thierry Arnoux, 22-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sssigagen2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ ( sigaGen ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | |
2 | sssigagen | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) ) | |
3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) ) |
4 | 1 3 | sstrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ ( sigaGen ‘ 𝐴 ) ) |