Metamath Proof Explorer


Theorem dmsigagen

Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion dmsigagen dom 𝛔 = V

Proof

Step Hyp Ref Expression
1 vuniex j V
2 pwsiga j V 𝒫 j sigAlgebra j
3 1 2 ax-mp 𝒫 j sigAlgebra j
4 pwuni j 𝒫 j
5 sseq2 s = 𝒫 j j s j 𝒫 j
6 5 rspcev 𝒫 j sigAlgebra j j 𝒫 j s sigAlgebra j j s
7 3 4 6 mp2an s sigAlgebra j j s
8 rabn0 s sigAlgebra j | j s s sigAlgebra j j s
9 7 8 mpbir s sigAlgebra j | j s
10 intex s sigAlgebra j | j s s sigAlgebra j | j s V
11 9 10 mpbi s sigAlgebra j | j s V
12 df-sigagen 𝛔 = j V s sigAlgebra j | j s
13 11 12 dmmpti dom 𝛔 = V