Metamath Proof Explorer


Theorem rabn0

Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999) (Revised by BJ, 16-Jul-2021)

Ref Expression
Assertion rabn0 xA|φxAφ

Proof

Step Hyp Ref Expression
1 rabeq0 xA|φ=xA¬φ
2 1 necon3abii xA|φ¬xA¬φ
3 dfrex2 xAφ¬xA¬φ
4 2 3 bitr4i xA|φxAφ