Metamath Proof Explorer


Theorem unisg

Description: The sigma-algebra generated by a collection A is a sigma-algebra on U. A . (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion unisg
|- ( A e. V -> U. ( sigaGen ` A ) = U. A )

Proof

Step Hyp Ref Expression
1 sigagensiga
 |-  ( A e. V -> ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) )
2 issgon
 |-  ( ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) <-> ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ U. A = U. ( sigaGen ` A ) ) )
3 1 2 sylib
 |-  ( A e. V -> ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ U. A = U. ( sigaGen ` A ) ) )
4 3 simprd
 |-  ( A e. V -> U. A = U. ( sigaGen ` A ) )
5 4 eqcomd
 |-  ( A e. V -> U. ( sigaGen ` A ) = U. A )