Description: The sigma-algebra generated by a collection A is a sigma-algebra on U. A . (Contributed by Thierry Arnoux, 27-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisg | |- ( A e. V -> U. ( sigaGen ` A ) = U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagensiga | |- ( A e. V -> ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) ) |
|
| 2 | issgon | |- ( ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) <-> ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ U. A = U. ( sigaGen ` A ) ) ) |
|
| 3 | 1 2 | sylib | |- ( A e. V -> ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ U. A = U. ( sigaGen ` A ) ) ) |
| 4 | 3 | simprd | |- ( A e. V -> U. A = U. ( sigaGen ` A ) ) |
| 5 | 4 | eqcomd | |- ( A e. V -> U. ( sigaGen ` A ) = U. A ) |