Description: The sigma-algebra generated by a collection A is a sigma-algebra on U. A . (Contributed by Thierry Arnoux, 27-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | unisg | |- ( A e. V -> U. ( sigaGen ` A ) = U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagensiga | |- ( A e. V -> ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) ) |
|
2 | issgon | |- ( ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) <-> ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ U. A = U. ( sigaGen ` A ) ) ) |
|
3 | 1 2 | sylib | |- ( A e. V -> ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ U. A = U. ( sigaGen ` A ) ) ) |
4 | 3 | simprd | |- ( A e. V -> U. A = U. ( sigaGen ` A ) ) |
5 | 4 | eqcomd | |- ( A e. V -> U. ( sigaGen ` A ) = U. A ) |