Metamath Proof Explorer


Theorem sgsiga

Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypothesis sgsiga.1
|- ( ph -> A e. V )
Assertion sgsiga
|- ( ph -> ( sigaGen ` A ) e. U. ran sigAlgebra )

Proof

Step Hyp Ref Expression
1 sgsiga.1
 |-  ( ph -> A e. V )
2 sigagensiga
 |-  ( A e. V -> ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) )
3 elrnsiga
 |-  ( ( sigaGen ` A ) e. ( sigAlgebra ` U. A ) -> ( sigaGen ` A ) e. U. ran sigAlgebra )
4 1 2 3 3syl
 |-  ( ph -> ( sigaGen ` A ) e. U. ran sigAlgebra )