Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sigagen | |- sigaGen = ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csigagen | |- sigaGen |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | csiga | |- sigAlgebra |
|
| 5 | 1 | cv | |- x |
| 6 | 5 | cuni | |- U. x |
| 7 | 6 4 | cfv | |- ( sigAlgebra ` U. x ) |
| 8 | 3 | cv | |- s |
| 9 | 5 8 | wss | |- x C_ s |
| 10 | 9 3 7 | crab | |- { s e. ( sigAlgebra ` U. x ) | x C_ s } |
| 11 | 10 | cint | |- |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } |
| 12 | 1 2 11 | cmpt | |- ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } ) |
| 13 | 0 12 | wceq | |- sigaGen = ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } ) |