Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | df-sigagen | |- sigaGen = ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csigagen | |- sigaGen |
|
1 | vx | |- x |
|
2 | cvv | |- _V |
|
3 | vs | |- s |
|
4 | csiga | |- sigAlgebra |
|
5 | 1 | cv | |- x |
6 | 5 | cuni | |- U. x |
7 | 6 4 | cfv | |- ( sigAlgebra ` U. x ) |
8 | 3 | cv | |- s |
9 | 5 8 | wss | |- x C_ s |
10 | 9 3 7 | crab | |- { s e. ( sigAlgebra ` U. x ) | x C_ s } |
11 | 10 | cint | |- |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } |
12 | 1 2 11 | cmpt | |- ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } ) |
13 | 0 12 | wceq | |- sigaGen = ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } ) |