Metamath Proof Explorer


Definition df-sigagen

Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion df-sigagen
|- sigaGen = ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csigagen
 |-  sigaGen
1 vx
 |-  x
2 cvv
 |-  _V
3 vs
 |-  s
4 csiga
 |-  sigAlgebra
5 1 cv
 |-  x
6 5 cuni
 |-  U. x
7 6 4 cfv
 |-  ( sigAlgebra ` U. x )
8 3 cv
 |-  s
9 5 8 wss
 |-  x C_ s
10 9 3 7 crab
 |-  { s e. ( sigAlgebra ` U. x ) | x C_ s }
11 10 cint
 |-  |^| { s e. ( sigAlgebra ` U. x ) | x C_ s }
12 1 2 11 cmpt
 |-  ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } )
13 0 12 wceq
 |-  sigaGen = ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } )