| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 2 |
1
|
cldss |
⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 4 |
|
dfss4 |
⊢ ( 𝑥 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) = 𝑥 ) |
| 5 |
3 4
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) = 𝑥 ) |
| 6 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
| 7 |
1
|
difopn |
⊢ ( ( ∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) |
| 8 |
6 7
|
sylan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) |
| 9 |
|
id |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ Top ) |
| 10 |
9
|
sgsiga |
⊢ ( 𝐽 ∈ Top → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
| 12 |
|
elex |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ V ) |
| 13 |
|
sigagensiga |
⊢ ( 𝐽 ∈ V → ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ ∪ 𝐽 ) ) |
| 14 |
|
baselsiga |
⊢ ( ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ ∪ 𝐽 ) → ∪ 𝐽 ∈ ( sigaGen ‘ 𝐽 ) ) |
| 15 |
12 13 14
|
3syl |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ ( sigaGen ‘ 𝐽 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) → ∪ 𝐽 ∈ ( sigaGen ‘ 𝐽 ) ) |
| 17 |
|
elsigagen |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( sigaGen ‘ 𝐽 ) ) |
| 18 |
|
difelsiga |
⊢ ( ( ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐽 ∈ ( sigaGen ‘ 𝐽 ) ∧ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( sigaGen ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ∈ ( sigaGen ‘ 𝐽 ) ) |
| 19 |
11 16 17 18
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ∈ ( sigaGen ‘ 𝐽 ) ) |
| 20 |
8 19
|
syldan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ∈ ( sigaGen ‘ 𝐽 ) ) |
| 21 |
5 20
|
eqeltrrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ ( sigaGen ‘ 𝐽 ) ) |
| 22 |
21
|
ex |
⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ∈ ( sigaGen ‘ 𝐽 ) ) ) |
| 23 |
22
|
ssrdv |
⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |