Metamath Proof Explorer


Theorem baselsiga

Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016)

Ref Expression
Assertion baselsiga ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) → 𝐴𝑆 )

Proof

Step Hyp Ref Expression
1 elex ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) → 𝑆 ∈ V )
2 issiga ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) ↔ ( 𝑆 ⊆ 𝒫 𝐴 ∧ ( 𝐴𝑆 ∧ ∀ 𝑥𝑆 ( 𝐴𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
3 2 simplbda ( ( 𝑆 ∈ V ∧ 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) ) → ( 𝐴𝑆 ∧ ∀ 𝑥𝑆 ( 𝐴𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
4 3 simp1d ( ( 𝑆 ∈ V ∧ 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) ) → 𝐴𝑆 )
5 1 4 mpancom ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) → 𝐴𝑆 )