Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | baselsiga | ⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) → 𝐴 ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) → 𝑆 ∈ V ) | |
2 | issiga | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) ↔ ( 𝑆 ⊆ 𝒫 𝐴 ∧ ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) | |
3 | 2 | simplbda | ⊢ ( ( 𝑆 ∈ V ∧ 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) ) → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
4 | 3 | simp1d | ⊢ ( ( 𝑆 ∈ V ∧ 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) ) → 𝐴 ∈ 𝑆 ) |
5 | 1 4 | mpancom | ⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝐴 ) → 𝐴 ∈ 𝑆 ) |