Metamath Proof Explorer


Theorem baselsiga

Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016)

Ref Expression
Assertion baselsiga
|- ( S e. ( sigAlgebra ` A ) -> A e. S )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( S e. ( sigAlgebra ` A ) -> S e. _V )
2 issiga
 |-  ( S e. _V -> ( S e. ( sigAlgebra ` A ) <-> ( S C_ ~P A /\ ( A e. S /\ A. x e. S ( A \ x ) e. S /\ A. x e. ~P S ( x ~<_ _om -> U. x e. S ) ) ) ) )
3 2 simplbda
 |-  ( ( S e. _V /\ S e. ( sigAlgebra ` A ) ) -> ( A e. S /\ A. x e. S ( A \ x ) e. S /\ A. x e. ~P S ( x ~<_ _om -> U. x e. S ) ) )
4 3 simp1d
 |-  ( ( S e. _V /\ S e. ( sigAlgebra ` A ) ) -> A e. S )
5 1 4 mpancom
 |-  ( S e. ( sigAlgebra ` A ) -> A e. S )