Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | baselsiga | |- ( S e. ( sigAlgebra ` A ) -> A e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( S e. ( sigAlgebra ` A ) -> S e. _V ) |
|
2 | issiga | |- ( S e. _V -> ( S e. ( sigAlgebra ` A ) <-> ( S C_ ~P A /\ ( A e. S /\ A. x e. S ( A \ x ) e. S /\ A. x e. ~P S ( x ~<_ _om -> U. x e. S ) ) ) ) ) |
|
3 | 2 | simplbda | |- ( ( S e. _V /\ S e. ( sigAlgebra ` A ) ) -> ( A e. S /\ A. x e. S ( A \ x ) e. S /\ A. x e. ~P S ( x ~<_ _om -> U. x e. S ) ) ) |
4 | 3 | simp1d | |- ( ( S e. _V /\ S e. ( sigAlgebra ` A ) ) -> A e. S ) |
5 | 1 4 | mpancom | |- ( S e. ( sigAlgebra ` A ) -> A e. S ) |