Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | unibrsiga | |- U. BrSiga = RR |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop | |- ( topGen ` ran (,) ) e. Top |
|
2 | unisg | |- ( ( topGen ` ran (,) ) e. Top -> U. ( sigaGen ` ( topGen ` ran (,) ) ) = U. ( topGen ` ran (,) ) ) |
|
3 | 1 2 | ax-mp | |- U. ( sigaGen ` ( topGen ` ran (,) ) ) = U. ( topGen ` ran (,) ) |
4 | df-brsiga | |- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
|
5 | 4 | unieqi | |- U. BrSiga = U. ( sigaGen ` ( topGen ` ran (,) ) ) |
6 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
7 | 3 5 6 | 3eqtr4i | |- U. BrSiga = RR |