Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unibrsiga | |- U. BrSiga = RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 2 | unisg | |- ( ( topGen ` ran (,) ) e. Top -> U. ( sigaGen ` ( topGen ` ran (,) ) ) = U. ( topGen ` ran (,) ) ) |
|
| 3 | 1 2 | ax-mp | |- U. ( sigaGen ` ( topGen ` ran (,) ) ) = U. ( topGen ` ran (,) ) |
| 4 | df-brsiga | |- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
|
| 5 | 4 | unieqi | |- U. BrSiga = U. ( sigaGen ` ( topGen ` ran (,) ) ) |
| 6 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 7 | 3 5 6 | 3eqtr4i | |- U. BrSiga = RR |