Metamath Proof Explorer


Theorem unibrsiga

Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion unibrsiga
|- U. BrSiga = RR

Proof

Step Hyp Ref Expression
1 retop
 |-  ( topGen ` ran (,) ) e. Top
2 unisg
 |-  ( ( topGen ` ran (,) ) e. Top -> U. ( sigaGen ` ( topGen ` ran (,) ) ) = U. ( topGen ` ran (,) ) )
3 1 2 ax-mp
 |-  U. ( sigaGen ` ( topGen ` ran (,) ) ) = U. ( topGen ` ran (,) )
4 df-brsiga
 |-  BrSiga = ( sigaGen ` ( topGen ` ran (,) ) )
5 4 unieqi
 |-  U. BrSiga = U. ( sigaGen ` ( topGen ` ran (,) ) )
6 uniretop
 |-  RR = U. ( topGen ` ran (,) )
7 3 5 6 3eqtr4i
 |-  U. BrSiga = RR