Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | unibrsiga | ⊢ ∪ 𝔅ℝ = ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
2 | unisg | ⊢ ( ( topGen ‘ ran (,) ) ∈ Top → ∪ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) = ∪ ( topGen ‘ ran (,) ) ) | |
3 | 1 2 | ax-mp | ⊢ ∪ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) = ∪ ( topGen ‘ ran (,) ) |
4 | df-brsiga | ⊢ 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) | |
5 | 4 | unieqi | ⊢ ∪ 𝔅ℝ = ∪ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
6 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
7 | 3 5 6 | 3eqtr4i | ⊢ ∪ 𝔅ℝ = ℝ |