Metamath Proof Explorer


Theorem unibrsiga

Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion unibrsiga 𝔅 = ℝ

Proof

Step Hyp Ref Expression
1 retop ( topGen ‘ ran (,) ) ∈ Top
2 unisg ( ( topGen ‘ ran (,) ) ∈ Top → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) = ( topGen ‘ ran (,) ) )
3 1 2 ax-mp ( sigaGen ‘ ( topGen ‘ ran (,) ) ) = ( topGen ‘ ran (,) )
4 df-brsiga 𝔅 = ( sigaGen ‘ ( topGen ‘ ran (,) ) )
5 4 unieqi 𝔅 = ( sigaGen ‘ ( topGen ‘ ran (,) ) )
6 uniretop ℝ = ( topGen ‘ ran (,) )
7 3 5 6 3eqtr4i 𝔅 = ℝ