Metamath Proof Explorer


Definition df-brsiga

Description: A Borel Algebra is defined as a sigma-algebra generated by a topology. 'The' Borel sigma-algebra here refers to the sigma-algebra generated by the topology of open intervals on real numbers. The Borel algebra of a given topology J is the sigma-algebra generated by J , ( sigaGenJ ) , so there is no need to introduce a special constant function for Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion df-brsiga 𝔅=𝛔topGenran.

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbrsiga class𝔅
1 csigagen class𝛔
2 ctg classtopGen
3 cioo class.
4 3 crn classran.
5 4 2 cfv classtopGenran.
6 5 1 cfv class𝛔topGenran.
7 0 6 wceq wff𝔅=𝛔topGenran.