Metamath Proof Explorer


Theorem ismbfm

Description: The predicate " F is a measurable function from the measurable space S to the measurable space T ". Cf. ismbf . (Contributed by Thierry Arnoux, 23-Jan-2017)

Ref Expression
Hypotheses ismbfm.1 φSransigAlgebra
ismbfm.2 φTransigAlgebra
Assertion ismbfm φFSMblFnμTFTSxTF-1xS

Proof

Step Hyp Ref Expression
1 ismbfm.1 φSransigAlgebra
2 ismbfm.2 φTransigAlgebra
3 unieq s=Ss=S
4 3 oveq2d s=Sts=tS
5 eleq2 s=Sf-1xsf-1xS
6 5 ralbidv s=Sxtf-1xsxtf-1xS
7 4 6 rabeqbidv s=Sfts|xtf-1xs=ftS|xtf-1xS
8 unieq t=Tt=T
9 8 oveq1d t=TtS=TS
10 raleq t=Txtf-1xSxTf-1xS
11 9 10 rabeqbidv t=TftS|xtf-1xS=fTS|xTf-1xS
12 df-mbfm MblFnμ=sransigAlgebra,transigAlgebrafts|xtf-1xs
13 ovex TSV
14 13 rabex fTS|xTf-1xSV
15 7 11 12 14 ovmpo SransigAlgebraTransigAlgebraSMblFnμT=fTS|xTf-1xS
16 1 2 15 syl2anc φSMblFnμT=fTS|xTf-1xS
17 16 eleq2d φFSMblFnμTFfTS|xTf-1xS
18 cnveq f=Ff-1=F-1
19 18 imaeq1d f=Ff-1x=F-1x
20 19 eleq1d f=Ff-1xSF-1xS
21 20 ralbidv f=FxTf-1xSxTF-1xS
22 21 elrab FfTS|xTf-1xSFTSxTF-1xS
23 17 22 bitrdi φFSMblFnμTFTSxTF-1xS