Metamath Proof Explorer


Theorem ismbf

Description: The predicate " F is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl . (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion ismbf F : A F MblFn x ran . F -1 x dom vol

Proof

Step Hyp Ref Expression
1 mbfdm F MblFn dom F dom vol
2 fdm F : A dom F = A
3 2 eleq1d F : A dom F dom vol A dom vol
4 1 3 syl5ib F : A F MblFn A dom vol
5 ioomax −∞ +∞ =
6 ioorebas −∞ +∞ ran .
7 5 6 eqeltrri ran .
8 imaeq2 x = F -1 x = F -1
9 8 eleq1d x = F -1 x dom vol F -1 dom vol
10 9 rspcv ran . x ran . F -1 x dom vol F -1 dom vol
11 7 10 ax-mp x ran . F -1 x dom vol F -1 dom vol
12 fimacnv F : A F -1 = A
13 12 eleq1d F : A F -1 dom vol A dom vol
14 11 13 syl5ib F : A x ran . F -1 x dom vol A dom vol
15 ismbf1 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
16 ffvelrn F : A x A F x
17 16 adantlr F : A A dom vol x A F x
18 17 rered F : A A dom vol x A F x = F x
19 18 mpteq2dva F : A A dom vol x A F x = x A F x
20 17 recnd F : A A dom vol x A F x
21 simpl F : A A dom vol F : A
22 21 feqmptd F : A A dom vol F = x A F x
23 ref :
24 23 a1i F : A A dom vol :
25 24 feqmptd F : A A dom vol = y y
26 fveq2 y = F x y = F x
27 20 22 25 26 fmptco F : A A dom vol F = x A F x
28 19 27 22 3eqtr4rd F : A A dom vol F = F
29 28 cnveqd F : A A dom vol F -1 = F -1
30 29 imaeq1d F : A A dom vol F -1 x = F -1 x
31 30 eleq1d F : A A dom vol F -1 x dom vol F -1 x dom vol
32 imf :
33 32 a1i F : A A dom vol :
34 33 feqmptd F : A A dom vol = y y
35 fveq2 y = F x y = F x
36 20 22 34 35 fmptco F : A A dom vol F = x A F x
37 17 reim0d F : A A dom vol x A F x = 0
38 37 mpteq2dva F : A A dom vol x A F x = x A 0
39 36 38 eqtrd F : A A dom vol F = x A 0
40 fconstmpt A × 0 = x A 0
41 39 40 eqtr4di F : A A dom vol F = A × 0
42 41 cnveqd F : A A dom vol F -1 = A × 0 -1
43 42 imaeq1d F : A A dom vol F -1 x = A × 0 -1 x
44 simpr F : A A dom vol A dom vol
45 0re 0
46 mbfconstlem A dom vol 0 A × 0 -1 x dom vol
47 44 45 46 sylancl F : A A dom vol A × 0 -1 x dom vol
48 43 47 eqeltrd F : A A dom vol F -1 x dom vol
49 48 biantrud F : A A dom vol F -1 x dom vol F -1 x dom vol F -1 x dom vol
50 31 49 bitrd F : A A dom vol F -1 x dom vol F -1 x dom vol F -1 x dom vol
51 50 ralbidv F : A A dom vol x ran . F -1 x dom vol x ran . F -1 x dom vol F -1 x dom vol
52 ax-resscn
53 fss F : A F : A
54 52 53 mpan2 F : A F : A
55 mblss A dom vol A
56 cnex V
57 reex V
58 elpm2r V V F : A A F 𝑝𝑚
59 56 57 58 mpanl12 F : A A F 𝑝𝑚
60 54 55 59 syl2an F : A A dom vol F 𝑝𝑚
61 60 biantrurd F : A A dom vol x ran . F -1 x dom vol F -1 x dom vol F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
62 51 61 bitrd F : A A dom vol x ran . F -1 x dom vol F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
63 15 62 bitr4id F : A A dom vol F MblFn x ran . F -1 x dom vol
64 63 ex F : A A dom vol F MblFn x ran . F -1 x dom vol
65 4 14 64 pm5.21ndd F : A F MblFn x ran . F -1 x dom vol