Metamath Proof Explorer


Definition df-mbf

Description: Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl ) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion df-mbf MblFn=f𝑝𝑚|xran.f-1xdomvolf-1xdomvol

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmbf classMblFn
1 vf setvarf
2 cc class
3 cpm class𝑝𝑚
4 cr class
5 2 4 3 co class𝑝𝑚
6 vx setvarx
7 cioo class.
8 7 crn classran.
9 cre class
10 1 cv setvarf
11 9 10 ccom classf
12 11 ccnv classf-1
13 6 cv setvarx
14 12 13 cima classf-1x
15 cvol classvol
16 15 cdm classdomvol
17 14 16 wcel wfff-1xdomvol
18 cim class
19 18 10 ccom classf
20 19 ccnv classf-1
21 20 13 cima classf-1x
22 21 16 wcel wfff-1xdomvol
23 17 22 wa wfff-1xdomvolf-1xdomvol
24 23 6 8 wral wffxran.f-1xdomvolf-1xdomvol
25 24 1 5 crab classf𝑝𝑚|xran.f-1xdomvolf-1xdomvol
26 0 25 wceq wffMblFn=f𝑝𝑚|xran.f-1xdomvolf-1xdomvol