| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmbf |
⊢ MblFn |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
cpm |
⊢ ↑pm |
| 4 |
|
cr |
⊢ ℝ |
| 5 |
2 4 3
|
co |
⊢ ( ℂ ↑pm ℝ ) |
| 6 |
|
vx |
⊢ 𝑥 |
| 7 |
|
cioo |
⊢ (,) |
| 8 |
7
|
crn |
⊢ ran (,) |
| 9 |
|
cre |
⊢ ℜ |
| 10 |
1
|
cv |
⊢ 𝑓 |
| 11 |
9 10
|
ccom |
⊢ ( ℜ ∘ 𝑓 ) |
| 12 |
11
|
ccnv |
⊢ ◡ ( ℜ ∘ 𝑓 ) |
| 13 |
6
|
cv |
⊢ 𝑥 |
| 14 |
12 13
|
cima |
⊢ ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) |
| 15 |
|
cvol |
⊢ vol |
| 16 |
15
|
cdm |
⊢ dom vol |
| 17 |
14 16
|
wcel |
⊢ ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol |
| 18 |
|
cim |
⊢ ℑ |
| 19 |
18 10
|
ccom |
⊢ ( ℑ ∘ 𝑓 ) |
| 20 |
19
|
ccnv |
⊢ ◡ ( ℑ ∘ 𝑓 ) |
| 21 |
20 13
|
cima |
⊢ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) |
| 22 |
21 16
|
wcel |
⊢ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol |
| 23 |
17 22
|
wa |
⊢ ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) |
| 24 |
23 6 8
|
wral |
⊢ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) |
| 25 |
24 1 5
|
crab |
⊢ { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) } |
| 26 |
0 25
|
wceq |
⊢ MblFn = { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) } |