Description: Define the Lebesgue measure, which is just the outer measure with a peculiar domain of definition. The property of being Lebesgue-measurable can be expressed as A e. dom vol . (Contributed by Mario Carneiro, 17-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-vol | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cvol | |
|
1 | covol | |
|
2 | vx | |
|
3 | vy | |
|
4 | 1 | ccnv | |
5 | cr | |
|
6 | 4 5 | cima | |
7 | 3 | cv | |
8 | 7 1 | cfv | |
9 | 2 | cv | |
10 | 7 9 | cin | |
11 | 10 1 | cfv | |
12 | caddc | |
|
13 | 7 9 | cdif | |
14 | 13 1 | cfv | |
15 | 11 14 12 | co | |
16 | 8 15 | wceq | |
17 | 16 3 6 | wral | |
18 | 17 2 | cab | |
19 | 1 18 | cres | |
20 | 0 19 | wceq | |