Metamath Proof Explorer


Definition df-vol

Description: Define the Lebesgue measure, which is just the outer measure with a peculiar domain of definition. The property of being Lebesgue-measurable can be expressed as A e. dom vol . (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion df-vol vol=vol*x|yvol*-1vol*y=vol*yx+vol*yx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvol classvol
1 covol classvol*
2 vx setvarx
3 vy setvary
4 1 ccnv classvol*-1
5 cr class
6 4 5 cima classvol*-1
7 3 cv setvary
8 7 1 cfv classvol*y
9 2 cv setvarx
10 7 9 cin classyx
11 10 1 cfv classvol*yx
12 caddc class+
13 7 9 cdif classyx
14 13 1 cfv classvol*yx
15 11 14 12 co classvol*yx+vol*yx
16 8 15 wceq wffvol*y=vol*yx+vol*yx
17 16 3 6 wral wffyvol*-1vol*y=vol*yx+vol*yx
18 17 2 cab classx|yvol*-1vol*y=vol*yx+vol*yx
19 1 18 cres classvol*x|yvol*-1vol*y=vol*yx+vol*yx
20 0 19 wceq wffvol=vol*x|yvol*-1vol*y=vol*yx+vol*yx