Metamath Proof Explorer


Definition df-ovol

Description: Define the outer Lebesgue measure for subsets of the reals. Here f is a function from the positive integers to pairs <. a , b >. with a <_ b , and the outer volume of the set x is the infimum over all such functions such that the union of the open intervals ( a , b ) covers x of the sum of b - a . (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Assertion df-ovol vol*=x𝒫supy*|f2xran.fy=supranseq1+absf*<*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 covol classvol*
1 vx setvarx
2 cr class
3 2 cpw class𝒫
4 vy setvary
5 cxr class*
6 vf setvarf
7 cle class
8 2 2 cxp class2
9 7 8 cin class2
10 cmap class𝑚
11 cn class
12 9 11 10 co class2
13 1 cv setvarx
14 cioo class.
15 6 cv setvarf
16 14 15 ccom class.f
17 16 crn classran.f
18 17 cuni classran.f
19 13 18 wss wffxran.f
20 4 cv setvary
21 c1 class1
22 caddc class+
23 cabs classabs
24 cmin class
25 23 24 ccom classabs
26 25 15 ccom classabsf
27 22 26 21 cseq classseq1+absf
28 27 crn classranseq1+absf
29 clt class<
30 28 5 29 csup classsupranseq1+absf*<
31 20 30 wceq wffy=supranseq1+absf*<
32 19 31 wa wffxran.fy=supranseq1+absf*<
33 32 6 12 wrex wfff2xran.fy=supranseq1+absf*<
34 33 4 5 crab classy*|f2xran.fy=supranseq1+absf*<
35 34 5 29 cinf classsupy*|f2xran.fy=supranseq1+absf*<*<
36 1 3 35 cmpt classx𝒫supy*|f2xran.fy=supranseq1+absf*<*<
37 0 36 wceq wffvol*=x𝒫supy*|f2xran.fy=supranseq1+absf*<*<