Metamath Proof Explorer


Definition df-vol

Description: Define the Lebesgue measure, which is just the outer measure with a peculiar domain of definition. The property of being Lebesgue-measurable can be expressed as A e. dom vol . (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion df-vol vol = ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦𝑥 ) ) + ( vol* ‘ ( 𝑦𝑥 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvol vol
1 covol vol*
2 vx 𝑥
3 vy 𝑦
4 1 ccnv vol*
5 cr
6 4 5 cima ( vol* “ ℝ )
7 3 cv 𝑦
8 7 1 cfv ( vol* ‘ 𝑦 )
9 2 cv 𝑥
10 7 9 cin ( 𝑦𝑥 )
11 10 1 cfv ( vol* ‘ ( 𝑦𝑥 ) )
12 caddc +
13 7 9 cdif ( 𝑦𝑥 )
14 13 1 cfv ( vol* ‘ ( 𝑦𝑥 ) )
15 11 14 12 co ( ( vol* ‘ ( 𝑦𝑥 ) ) + ( vol* ‘ ( 𝑦𝑥 ) ) )
16 8 15 wceq ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦𝑥 ) ) + ( vol* ‘ ( 𝑦𝑥 ) ) )
17 16 3 6 wral 𝑦 ∈ ( vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦𝑥 ) ) + ( vol* ‘ ( 𝑦𝑥 ) ) )
18 17 2 cab { 𝑥 ∣ ∀ 𝑦 ∈ ( vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦𝑥 ) ) + ( vol* ‘ ( 𝑦𝑥 ) ) ) }
19 1 18 cres ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦𝑥 ) ) + ( vol* ‘ ( 𝑦𝑥 ) ) ) } )
20 0 19 wceq vol = ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦𝑥 ) ) + ( vol* ‘ ( 𝑦𝑥 ) ) ) } )