Metamath Proof Explorer


Theorem imf

Description: Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imf :

Proof

Step Hyp Ref Expression
1 df-im =xxi
2 imval xx=xi
3 imcl xx
4 2 3 eqeltrrd xxi
5 1 4 fmpti :