Metamath Proof Explorer


Theorem ioorebas

Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Assertion ioorebas ABran.

Proof

Step Hyp Ref Expression
1 id AB=AB=
2 iooid 00=
3 ioof .:*×*𝒫
4 ffn .:*×*𝒫.Fn*×*
5 3 4 ax-mp .Fn*×*
6 0xr 0*
7 fnovrn .Fn*×*0*0*00ran.
8 5 6 6 7 mp3an 00ran.
9 2 8 eqeltrri ran.
10 1 9 eqeltrdi AB=ABran.
11 n0 ABxxAB
12 eliooxr xABA*B*
13 fnovrn .Fn*×*A*B*ABran.
14 5 13 mp3an1 A*B*ABran.
15 12 14 syl xABABran.
16 15 exlimiv xxABABran.
17 11 16 sylbi ABABran.
18 10 17 pm2.61ine ABran.