Metamath Proof Explorer


Theorem xrge0neqmnf

Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017) (Proof shortened by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion xrge0neqmnf A0+∞A−∞

Proof

Step Hyp Ref Expression
1 eliccxr A0+∞A*
2 0xr 0*
3 pnfxr +∞*
4 iccgelb 0*+∞*A0+∞0A
5 2 3 4 mp3an12 A0+∞0A
6 ge0nemnf A*0AA−∞
7 1 5 6 syl2anc A0+∞A−∞