Metamath Proof Explorer


Theorem ge0nemnf

Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion ge0nemnf A*0AA−∞

Proof

Step Hyp Ref Expression
1 ge0gtmnf A*0A−∞<A
2 ngtmnft A*A=−∞¬−∞<A
3 2 adantr A*0AA=−∞¬−∞<A
4 3 necon2abid A*0A−∞<AA−∞
5 1 4 mpbid A*0AA−∞