Metamath Proof Explorer


Theorem xrrege0

Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xrrege0 A*B0AABA

Proof

Step Hyp Ref Expression
1 ge0gtmnf A*0A−∞<A
2 1 ad2ant2r A*B0AAB−∞<A
3 simprr A*B0AABAB
4 2 3 jca A*B0AAB−∞<AAB
5 xrre A*B−∞<AABA
6 4 5 syldan A*B0AABA