Metamath Proof Explorer


Theorem xrge0nre

Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion xrge0nre A0+∞¬AA=+∞

Proof

Step Hyp Ref Expression
1 eliccxr A0+∞A*
2 xrge0neqmnf A0+∞A−∞
3 xrnemnf A*A−∞AA=+∞
4 3 biimpi A*A−∞AA=+∞
5 1 2 4 syl2anc A0+∞AA=+∞
6 5 orcanai A0+∞¬AA=+∞