Metamath Proof Explorer


Theorem ioof

Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion ioof .:*×*𝒫

Proof

Step Hyp Ref Expression
1 iooval x*y*xy=z*|x<zz<y
2 ioossre xy
3 ovex xyV
4 3 elpw xy𝒫xy
5 2 4 mpbir xy𝒫
6 1 5 eqeltrrdi x*y*z*|x<zz<y𝒫
7 6 rgen2 x*y*z*|x<zz<y𝒫
8 df-ioo .=x*,y*z*|x<zz<y
9 8 fmpo x*y*z*|x<zz<y𝒫.:*×*𝒫
10 7 9 mpbi .:*×*𝒫