Step |
Hyp |
Ref |
Expression |
1 |
|
iooval |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x (,) y ) = { z e. RR* | ( x < z /\ z < y ) } ) |
2 |
|
ioossre |
|- ( x (,) y ) C_ RR |
3 |
|
ovex |
|- ( x (,) y ) e. _V |
4 |
3
|
elpw |
|- ( ( x (,) y ) e. ~P RR <-> ( x (,) y ) C_ RR ) |
5 |
2 4
|
mpbir |
|- ( x (,) y ) e. ~P RR |
6 |
1 5
|
eqeltrrdi |
|- ( ( x e. RR* /\ y e. RR* ) -> { z e. RR* | ( x < z /\ z < y ) } e. ~P RR ) |
7 |
6
|
rgen2 |
|- A. x e. RR* A. y e. RR* { z e. RR* | ( x < z /\ z < y ) } e. ~P RR |
8 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
9 |
8
|
fmpo |
|- ( A. x e. RR* A. y e. RR* { z e. RR* | ( x < z /\ z < y ) } e. ~P RR <-> (,) : ( RR* X. RR* ) --> ~P RR ) |
10 |
7 9
|
mpbi |
|- (,) : ( RR* X. RR* ) --> ~P RR |