Metamath Proof Explorer


Theorem mbfdm

Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfdm FMblFndomFdomvol

Proof

Step Hyp Ref Expression
1 ref :
2 mbff FMblFnF:domF
3 fco :F:domFF:domF
4 1 2 3 sylancr FMblFnF:domF
5 fimacnv F:domFF-1=domF
6 4 5 syl FMblFnF-1=domF
7 imaeq2 x=F-1x=F-1
8 7 eleq1d x=F-1xdomvolF-1domvol
9 ismbf1 FMblFnF𝑝𝑚xran.F-1xdomvolF-1xdomvol
10 simpl F-1xdomvolF-1xdomvolF-1xdomvol
11 10 ralimi xran.F-1xdomvolF-1xdomvolxran.F-1xdomvol
12 9 11 simplbiim FMblFnxran.F-1xdomvol
13 ioomax −∞+∞=
14 ioof .:*×*𝒫
15 ffn .:*×*𝒫.Fn*×*
16 14 15 ax-mp .Fn*×*
17 mnfxr −∞*
18 pnfxr +∞*
19 fnovrn .Fn*×*−∞*+∞*−∞+∞ran.
20 16 17 18 19 mp3an −∞+∞ran.
21 13 20 eqeltrri ran.
22 21 a1i FMblFnran.
23 8 12 22 rspcdva FMblFnF-1domvol
24 6 23 eqeltrrd FMblFndomFdomvol