| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ref | ⊢ ℜ : ℂ ⟶ ℝ | 
						
							| 2 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 3 |  | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ  ∧  𝐹 : dom  𝐹 ⟶ ℂ )  →  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝐹  ∈  MblFn  →  ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ ) | 
						
							| 5 |  | fimacnv | ⊢ ( ( ℜ  ∘  𝐹 ) : dom  𝐹 ⟶ ℝ  →  ( ◡ ( ℜ  ∘  𝐹 )  “  ℝ )  =  dom  𝐹 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐹  ∈  MblFn  →  ( ◡ ( ℜ  ∘  𝐹 )  “  ℝ )  =  dom  𝐹 ) | 
						
							| 7 |  | imaeq2 | ⊢ ( 𝑥  =  ℝ  →  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  =  ( ◡ ( ℜ  ∘  𝐹 )  “  ℝ ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑥  =  ℝ  →  ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ↔  ( ◡ ( ℜ  ∘  𝐹 )  “  ℝ )  ∈  dom  vol ) ) | 
						
							| 9 |  | ismbf1 | ⊢ ( 𝐹  ∈  MblFn  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  ℝ )  ∧  ∀ 𝑥  ∈  ran  (,) ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol )  →  ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥  ∈  ran  (,) ( ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol )  →  ∀ 𝑥  ∈  ran  (,) ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 12 | 9 11 | simplbiim | ⊢ ( 𝐹  ∈  MblFn  →  ∀ 𝑥  ∈  ran  (,) ( ◡ ( ℜ  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 13 |  | ioomax | ⊢ ( -∞ (,) +∞ )  =  ℝ | 
						
							| 14 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 15 |  | ffn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  (,)  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ (,)  Fn  ( ℝ*  ×  ℝ* ) | 
						
							| 17 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 18 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 19 |  | fnovrn | ⊢ ( ( (,)  Fn  ( ℝ*  ×  ℝ* )  ∧  -∞  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( -∞ (,) +∞ )  ∈  ran  (,) ) | 
						
							| 20 | 16 17 18 19 | mp3an | ⊢ ( -∞ (,) +∞ )  ∈  ran  (,) | 
						
							| 21 | 13 20 | eqeltrri | ⊢ ℝ  ∈  ran  (,) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐹  ∈  MblFn  →  ℝ  ∈  ran  (,) ) | 
						
							| 23 | 8 12 22 | rspcdva | ⊢ ( 𝐹  ∈  MblFn  →  ( ◡ ( ℜ  ∘  𝐹 )  “  ℝ )  ∈  dom  vol ) | 
						
							| 24 | 6 23 | eqeltrrd | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) |