| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ref |  |-  Re : CC --> RR | 
						
							| 2 |  | mbff |  |-  ( F e. MblFn -> F : dom F --> CC ) | 
						
							| 3 |  | fco |  |-  ( ( Re : CC --> RR /\ F : dom F --> CC ) -> ( Re o. F ) : dom F --> RR ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( F e. MblFn -> ( Re o. F ) : dom F --> RR ) | 
						
							| 5 |  | fimacnv |  |-  ( ( Re o. F ) : dom F --> RR -> ( `' ( Re o. F ) " RR ) = dom F ) | 
						
							| 6 | 4 5 | syl |  |-  ( F e. MblFn -> ( `' ( Re o. F ) " RR ) = dom F ) | 
						
							| 7 |  | imaeq2 |  |-  ( x = RR -> ( `' ( Re o. F ) " x ) = ( `' ( Re o. F ) " RR ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( x = RR -> ( ( `' ( Re o. F ) " x ) e. dom vol <-> ( `' ( Re o. F ) " RR ) e. dom vol ) ) | 
						
							| 9 |  | ismbf1 |  |-  ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) | 
						
							| 10 |  | simpl |  |-  ( ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) -> ( `' ( Re o. F ) " x ) e. dom vol ) | 
						
							| 11 | 10 | ralimi |  |-  ( A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) -> A. x e. ran (,) ( `' ( Re o. F ) " x ) e. dom vol ) | 
						
							| 12 | 9 11 | simplbiim |  |-  ( F e. MblFn -> A. x e. ran (,) ( `' ( Re o. F ) " x ) e. dom vol ) | 
						
							| 13 |  | ioomax |  |-  ( -oo (,) +oo ) = RR | 
						
							| 14 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 15 |  | ffn |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  (,) Fn ( RR* X. RR* ) | 
						
							| 17 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 18 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 19 |  | fnovrn |  |-  ( ( (,) Fn ( RR* X. RR* ) /\ -oo e. RR* /\ +oo e. RR* ) -> ( -oo (,) +oo ) e. ran (,) ) | 
						
							| 20 | 16 17 18 19 | mp3an |  |-  ( -oo (,) +oo ) e. ran (,) | 
						
							| 21 | 13 20 | eqeltrri |  |-  RR e. ran (,) | 
						
							| 22 | 21 | a1i |  |-  ( F e. MblFn -> RR e. ran (,) ) | 
						
							| 23 | 8 12 22 | rspcdva |  |-  ( F e. MblFn -> ( `' ( Re o. F ) " RR ) e. dom vol ) | 
						
							| 24 | 6 23 | eqeltrrd |  |-  ( F e. MblFn -> dom F e. dom vol ) |