| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mnfxr | 
							 |-  -oo e. RR*  | 
						
						
							| 2 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 3 | 
							
								
							 | 
							iooval2 | 
							 |-  ( ( -oo e. RR* /\ +oo e. RR* ) -> ( -oo (,) +oo ) = { x e. RR | ( -oo < x /\ x < +oo ) } ) | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							mp2an | 
							 |-  ( -oo (,) +oo ) = { x e. RR | ( -oo < x /\ x < +oo ) } | 
						
						
							| 5 | 
							
								
							 | 
							rabid2 | 
							 |-  ( RR = { x e. RR | ( -oo < x /\ x < +oo ) } <-> A. x e. RR ( -oo < x /\ x < +oo ) ) | 
						
						
							| 6 | 
							
								
							 | 
							mnflt | 
							 |-  ( x e. RR -> -oo < x )  | 
						
						
							| 7 | 
							
								
							 | 
							ltpnf | 
							 |-  ( x e. RR -> x < +oo )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							jca | 
							 |-  ( x e. RR -> ( -oo < x /\ x < +oo ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							mprgbir | 
							 |-  RR = { x e. RR | ( -oo < x /\ x < +oo ) } | 
						
						
							| 10 | 
							
								4 9
							 | 
							eqtr4i | 
							 |-  ( -oo (,) +oo ) = RR  |