Metamath Proof Explorer


Theorem iooval2

Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooval2
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR | ( A < x /\ x < B ) } )

Proof

Step Hyp Ref Expression
1 iooval
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR* | ( A < x /\ x < B ) } )
2 inrab2
 |-  ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. ( RR* i^i RR ) | ( A < x /\ x < B ) }
3 ressxr
 |-  RR C_ RR*
4 sseqin2
 |-  ( RR C_ RR* <-> ( RR* i^i RR ) = RR )
5 3 4 mpbi
 |-  ( RR* i^i RR ) = RR
6 5 rabeqi
 |-  { x e. ( RR* i^i RR ) | ( A < x /\ x < B ) } = { x e. RR | ( A < x /\ x < B ) }
7 2 6 eqtri
 |-  ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR | ( A < x /\ x < B ) }
8 elioore
 |-  ( x e. ( A (,) B ) -> x e. RR )
9 8 ssriv
 |-  ( A (,) B ) C_ RR
10 1 9 eqsstrrdi
 |-  ( ( A e. RR* /\ B e. RR* ) -> { x e. RR* | ( A < x /\ x < B ) } C_ RR )
11 df-ss
 |-  ( { x e. RR* | ( A < x /\ x < B ) } C_ RR <-> ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR* | ( A < x /\ x < B ) } )
12 10 11 sylib
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR* | ( A < x /\ x < B ) } )
13 7 12 syl5reqr
 |-  ( ( A e. RR* /\ B e. RR* ) -> { x e. RR* | ( A < x /\ x < B ) } = { x e. RR | ( A < x /\ x < B ) } )
14 1 13 eqtrd
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR | ( A < x /\ x < B ) } )