Metamath Proof Explorer


Theorem rabeqi

Description: Equality theorem for restricted class abstractions. Inference form of rabeqf . (Contributed by Glauco Siliprandi, 26-Jun-2021) Avoid ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 3-Jun-2024)

Ref Expression
Hypothesis rabeqi.1
|- A = B
Assertion rabeqi
|- { x e. A | ph } = { x e. B | ph }

Proof

Step Hyp Ref Expression
1 rabeqi.1
 |-  A = B
2 1 eleq2i
 |-  ( x e. A <-> x e. B )
3 2 anbi1i
 |-  ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) )
4 3 rabbia2
 |-  { x e. A | ph } = { x e. B | ph }