Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqf.1 | |- F/_ x A |
|
| rabeqf.2 | |- F/_ x B |
||
| Assertion | rabeqf | |- ( A = B -> { x e. A | ph } = { x e. B | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqf.1 | |- F/_ x A |
|
| 2 | rabeqf.2 | |- F/_ x B |
|
| 3 | 1 2 | nfeq | |- F/ x A = B |
| 4 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) |
|
| 5 | 4 | anbi1d | |- ( A = B -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) ) |
| 6 | 3 5 | abbid | |- ( A = B -> { x | ( x e. A /\ ph ) } = { x | ( x e. B /\ ph ) } ) |
| 7 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 8 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( A = B -> { x e. A | ph } = { x e. B | ph } ) |