Metamath Proof Explorer


Theorem rabeqf

Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004)

Ref Expression
Hypotheses rabeqf.1 _xA
rabeqf.2 _xB
Assertion rabeqf A=BxA|φ=xB|φ

Proof

Step Hyp Ref Expression
1 rabeqf.1 _xA
2 rabeqf.2 _xB
3 1 2 nfeq xA=B
4 eleq2 A=BxAxB
5 4 anbi1d A=BxAφxBφ
6 3 5 abbid A=Bx|xAφ=x|xBφ
7 df-rab xA|φ=x|xAφ
8 df-rab xB|φ=x|xBφ
9 6 7 8 3eqtr4g A=BxA|φ=xB|φ