Metamath Proof Explorer


Theorem rabbia2

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis rabbia2.1
|- ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) )
Assertion rabbia2
|- { x e. A | ps } = { x e. B | ch }

Proof

Step Hyp Ref Expression
1 rabbia2.1
 |-  ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) )
2 1 a1i
 |-  ( T. -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
3 2 rabbidva2
 |-  ( T. -> { x e. A | ps } = { x e. B | ch } )
4 3 mptru
 |-  { x e. A | ps } = { x e. B | ch }