Metamath Proof Explorer


Theorem fimacnv

Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion fimacnv F : A B F -1 B = A

Proof

Step Hyp Ref Expression
1 frn F : A B ran F B
2 cnvimassrndm ran F B F -1 B = dom F
3 1 2 syl F : A B F -1 B = dom F
4 fdm F : A B dom F = A
5 3 4 eqtrd F : A B F -1 B = A