Metamath Proof Explorer


Theorem ismbf1

Description: The predicate " F is a measurable function". This is more naturally stated for functions on the reals, see ismbf and ismbfcn for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion ismbf1 FMblFnF𝑝𝑚xran.F-1xdomvolF-1xdomvol

Proof

Step Hyp Ref Expression
1 coeq2 f=Ff=F
2 1 cnveqd f=Ff-1=F-1
3 2 imaeq1d f=Ff-1x=F-1x
4 3 eleq1d f=Ff-1xdomvolF-1xdomvol
5 coeq2 f=Ff=F
6 5 cnveqd f=Ff-1=F-1
7 6 imaeq1d f=Ff-1x=F-1x
8 7 eleq1d f=Ff-1xdomvolF-1xdomvol
9 4 8 anbi12d f=Ff-1xdomvolf-1xdomvolF-1xdomvolF-1xdomvol
10 9 ralbidv f=Fxran.f-1xdomvolf-1xdomvolxran.F-1xdomvolF-1xdomvol
11 df-mbf MblFn=f𝑝𝑚|xran.f-1xdomvolf-1xdomvol
12 10 11 elrab2 FMblFnF𝑝𝑚xran.F-1xdomvolF-1xdomvol