Metamath Proof Explorer


Theorem mbff

Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbff FMblFnF:domF

Proof

Step Hyp Ref Expression
1 ismbf1 FMblFnF𝑝𝑚xran.F-1xdomvolF-1xdomvol
2 1 simplbi FMblFnF𝑝𝑚
3 cnex V
4 reex V
5 3 4 elpm2 F𝑝𝑚F:domFdomF
6 5 simplbi F𝑝𝑚F:domF
7 2 6 syl FMblFnF:domF