Step |
Hyp |
Ref |
Expression |
1 |
|
ismbfm.1 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
2 |
|
ismbfm.2 |
⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) |
3 |
|
unieq |
⊢ ( 𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆 ) |
4 |
3
|
oveq2d |
⊢ ( 𝑠 = 𝑆 → ( ∪ 𝑡 ↑m ∪ 𝑠 ) = ( ∪ 𝑡 ↑m ∪ 𝑆 ) ) |
5 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑠 ↔ ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑡 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝑡 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 ) ) |
7 |
4 6
|
rabeqbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ∪ 𝑡 ↑m ∪ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑠 } = { 𝑓 ∈ ( ∪ 𝑡 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑡 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } ) |
8 |
|
unieq |
⊢ ( 𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇 ) |
9 |
8
|
oveq1d |
⊢ ( 𝑡 = 𝑇 → ( ∪ 𝑡 ↑m ∪ 𝑆 ) = ( ∪ 𝑇 ↑m ∪ 𝑆 ) ) |
10 |
|
raleq |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ 𝑡 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 ) ) |
11 |
9 10
|
rabeqbidv |
⊢ ( 𝑡 = 𝑇 → { 𝑓 ∈ ( ∪ 𝑡 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑡 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } = { 𝑓 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } ) |
12 |
|
df-mbfm |
⊢ MblFnM = ( 𝑠 ∈ ∪ ran sigAlgebra , 𝑡 ∈ ∪ ran sigAlgebra ↦ { 𝑓 ∈ ( ∪ 𝑡 ↑m ∪ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑠 } ) |
13 |
|
ovex |
⊢ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∈ V |
14 |
13
|
rabex |
⊢ { 𝑓 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } ∈ V |
15 |
7 11 12 14
|
ovmpo |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra ) → ( 𝑆 MblFnM 𝑇 ) = { 𝑓 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } ) |
16 |
1 2 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 MblFnM 𝑇 ) = { 𝑓 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } ) |
17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } ) ) |
18 |
|
cnveq |
⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) |
19 |
18
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) |
22 |
21
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∣ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝑆 } ↔ ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) |
23 |
17 22
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) ) |