| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-mbfm | ⊢ MblFnM  =  ( 𝑠  ∈  ∪  ran  sigAlgebra ,  𝑡  ∈  ∪  ran  sigAlgebra  ↦  { 𝑓  ∈  ( ∪  𝑡  ↑m  ∪  𝑠 )  ∣  ∀ 𝑥  ∈  𝑡 ( ◡ 𝑓  “  𝑥 )  ∈  𝑠 } ) | 
						
							| 2 | 1 | mpofun | ⊢ Fun  MblFnM | 
						
							| 3 |  | elunirn | ⊢ ( Fun  MblFnM  →  ( 𝐹  ∈  ∪  ran  MblFnM  ↔  ∃ 𝑎  ∈  dom  MblFnM 𝐹  ∈  ( MblFnM ‘ 𝑎 ) ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 𝐹  ∈  ∪  ran  MblFnM  ↔  ∃ 𝑎  ∈  dom  MblFnM 𝐹  ∈  ( MblFnM ‘ 𝑎 ) ) | 
						
							| 5 |  | ovex | ⊢ ( ∪  𝑡  ↑m  ∪  𝑠 )  ∈  V | 
						
							| 6 | 5 | rabex | ⊢ { 𝑓  ∈  ( ∪  𝑡  ↑m  ∪  𝑠 )  ∣  ∀ 𝑥  ∈  𝑡 ( ◡ 𝑓  “  𝑥 )  ∈  𝑠 }  ∈  V | 
						
							| 7 | 1 6 | dmmpo | ⊢ dom  MblFnM  =  ( ∪  ran  sigAlgebra  ×  ∪  ran  sigAlgebra ) | 
						
							| 8 | 7 | rexeqi | ⊢ ( ∃ 𝑎  ∈  dom  MblFnM 𝐹  ∈  ( MblFnM ‘ 𝑎 )  ↔  ∃ 𝑎  ∈  ( ∪  ran  sigAlgebra  ×  ∪  ran  sigAlgebra ) 𝐹  ∈  ( MblFnM ‘ 𝑎 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑎  =  〈 𝑠 ,  𝑡 〉  →  ( MblFnM ‘ 𝑎 )  =  ( MblFnM ‘ 〈 𝑠 ,  𝑡 〉 ) ) | 
						
							| 10 |  | df-ov | ⊢ ( 𝑠 MblFnM 𝑡 )  =  ( MblFnM ‘ 〈 𝑠 ,  𝑡 〉 ) | 
						
							| 11 | 9 10 | eqtr4di | ⊢ ( 𝑎  =  〈 𝑠 ,  𝑡 〉  →  ( MblFnM ‘ 𝑎 )  =  ( 𝑠 MblFnM 𝑡 ) ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝑎  =  〈 𝑠 ,  𝑡 〉  →  ( 𝐹  ∈  ( MblFnM ‘ 𝑎 )  ↔  𝐹  ∈  ( 𝑠 MblFnM 𝑡 ) ) ) | 
						
							| 13 | 12 | rexxp | ⊢ ( ∃ 𝑎  ∈  ( ∪  ran  sigAlgebra  ×  ∪  ran  sigAlgebra ) 𝐹  ∈  ( MblFnM ‘ 𝑎 )  ↔  ∃ 𝑠  ∈  ∪  ran  sigAlgebra ∃ 𝑡  ∈  ∪  ran  sigAlgebra 𝐹  ∈  ( 𝑠 MblFnM 𝑡 ) ) | 
						
							| 14 | 4 8 13 | 3bitri | ⊢ ( 𝐹  ∈  ∪  ran  MblFnM  ↔  ∃ 𝑠  ∈  ∪  ran  sigAlgebra ∃ 𝑡  ∈  ∪  ran  sigAlgebra 𝐹  ∈  ( 𝑠 MblFnM 𝑡 ) ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑠  ∈  ∪  ran  sigAlgebra  ∧  𝑡  ∈  ∪  ran  sigAlgebra )  →  𝑠  ∈  ∪  ran  sigAlgebra ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝑠  ∈  ∪  ran  sigAlgebra  ∧  𝑡  ∈  ∪  ran  sigAlgebra )  →  𝑡  ∈  ∪  ran  sigAlgebra ) | 
						
							| 17 | 15 16 | ismbfm | ⊢ ( ( 𝑠  ∈  ∪  ran  sigAlgebra  ∧  𝑡  ∈  ∪  ran  sigAlgebra )  →  ( 𝐹  ∈  ( 𝑠 MblFnM 𝑡 )  ↔  ( 𝐹  ∈  ( ∪  𝑡  ↑m  ∪  𝑠 )  ∧  ∀ 𝑥  ∈  𝑡 ( ◡ 𝐹  “  𝑥 )  ∈  𝑠 ) ) ) | 
						
							| 18 | 17 | 2rexbiia | ⊢ ( ∃ 𝑠  ∈  ∪  ran  sigAlgebra ∃ 𝑡  ∈  ∪  ran  sigAlgebra 𝐹  ∈  ( 𝑠 MblFnM 𝑡 )  ↔  ∃ 𝑠  ∈  ∪  ran  sigAlgebra ∃ 𝑡  ∈  ∪  ran  sigAlgebra ( 𝐹  ∈  ( ∪  𝑡  ↑m  ∪  𝑠 )  ∧  ∀ 𝑥  ∈  𝑡 ( ◡ 𝐹  “  𝑥 )  ∈  𝑠 ) ) | 
						
							| 19 | 14 18 | bitri | ⊢ ( 𝐹  ∈  ∪  ran  MblFnM  ↔  ∃ 𝑠  ∈  ∪  ran  sigAlgebra ∃ 𝑡  ∈  ∪  ran  sigAlgebra ( 𝐹  ∈  ( ∪  𝑡  ↑m  ∪  𝑠 )  ∧  ∀ 𝑥  ∈  𝑡 ( ◡ 𝐹  “  𝑥 )  ∈  𝑠 ) ) |