Metamath Proof Explorer


Theorem mbfmfun

Description: A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017)

Ref Expression
Hypothesis mbfmfun.1 ( 𝜑𝐹 ran MblFnM )
Assertion mbfmfun ( 𝜑 → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 mbfmfun.1 ( 𝜑𝐹 ran MblFnM )
2 elunirnmbfm ( 𝐹 ran MblFnM ↔ ∃ 𝑠 ran sigAlgebra ∃ 𝑡 ran sigAlgebra ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) )
3 2 biimpi ( 𝐹 ran MblFnM → ∃ 𝑠 ran sigAlgebra ∃ 𝑡 ran sigAlgebra ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) )
4 elmapfun ( 𝐹 ∈ ( 𝑡m 𝑠 ) → Fun 𝐹 )
5 4 adantr ( ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) → Fun 𝐹 )
6 5 rexlimivw ( ∃ 𝑡 ran sigAlgebra ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) → Fun 𝐹 )
7 6 rexlimivw ( ∃ 𝑠 ran sigAlgebra ∃ 𝑡 ran sigAlgebra ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) → Fun 𝐹 )
8 1 3 7 3syl ( 𝜑 → Fun 𝐹 )